
Unstructured Data Analysis with 
DocETL

Shreya Shankar1, Aditya G. Parameswaran1, Eugene Wu2 
UC Berkeley EECS1 and Columbia University2 

November 2024

 1

docetl.org 

http://docetl.org


DocETL: A System for Unstructured Data Processing
Launched ~2 mos ago

2

🧩 No/Low-Code Interface
Declarative YAML interface and operator suite that makes 
complex document processing accessible to non-programmers

1.3k ⭐

🪄 Agentic Optimizer*
Improves output accuracy and quality by intelligently and 
automatically decomposing complex tasks

*We currently focus on optimizing accuracy, not cost.

We’re Just Getting Started! 🚀

🏛 Civic Engagement 
🔍 Forensic Psychiatry 
📧 Email Analysis 
⚖ Mining Law Articles 
📚 Summarizing educational 
resources

github.com/ucbepic/docetl 300+ 

http://github.com/ucbepic/docetl


Demo

3



Today’s Goals 🎯

4

💡 KEY INSIGHT

LLM-powered query processing requires optimizing for accuracy, not just performance.

1⃣ Why Optimize for Accuracy? 

❌ Long documents break LLMs 

⚠ LLMs make mistakes on hard data 
processing tasks 

🔄 Complex tasks require tedious 
decomposition

2⃣ An Architecture for Such a Query 
Optimizer 

📝 Novel rewrite directives for accuracy 

🤖 LLMs as accuracy judges in query 
optimization 

📈 25-66% accuracy boosts across tasks



Complex Document Processing

5

Police Records

⚠ Challenges 
Multiple document types (case 

reports, hearings, etc) 
Very long & inconsistent

⚠ Challenges 
Complex reasoning required 

Cross-document analysis 

Required Analysis Types

🚓 Extract Misconduct 

Identify instances of procedural 
violations and misconduct

👮 Officer Resolution 

Link incidents involving the same 
officer across documents

Current Approaches

📋 Manual Review 

Too time-consuming!

🧑🏫 Train Custom Models 

Too resource-intensive!

🤖 Use LLMs 

Error-prone 

Hard to program

https://bids.berkeley.edu/california-police-records-access-project 

https://bids.berkeley.edu/california-police-records-access-project


A Declarative Solution

6

- name: extract_misconduct 
  type: map 
  output: 
    schema: 
      misconduct: "list[{officer: str, incident: str}]" 
  prompt: | 
    Analyze the following police record…

✅ Automatic 
performance 
optimization

✅ Human-
friendly

✅ Amenable 
to complex 
pipelines

🤔 Is this all?? 
Are we 
done??



Still, Writing Reliable Complex Pipelines is Hard

7

Missed Information

found

missed

LLMs ignore instances 
or give incorrect 
answers when docs 
are too long

Manual Validation
Users must verify 
correctness themselves

🕵📜
Experimentation
Users must figure out 
how best to decompose 
tasks



Unfortunately, LLM Mistakes are Here to Stay
Recent research shows these limitations are fundamental

8

💬 On Limitations of the 
Transformer Architecture 
Peng, Narayanan, & Papadimitriou 2024 

Transformers can’t solve 
certain compositional tasks

💬 Calibrated Language 
Models Must Hallucinate 
Kalai & Vempala, STOC 2024 

Good predictions require some 
hallucination

💬 Same Task, More Tokens: Impact of Input Length on 
LLM Reasoning 
Levy, Jacoby & Goldberg, ACL 2024 

Longer inputs = worse performance, even when the task’s 
inherent complexity is unchanged



🔑 Key insight: complex tasks need to be broken 
down into smaller, well-scoped tasks to be correct.

9



Systems Should Rewrite Pipelines to Optimize Accuracy

10

For each police officer involved, 
extract any instances of misconduct.

Extract police 
officer names

Extract instances 
of misconduct

Extract police 
officer names

Filter for officers who 
exhibited misconduct

Extract instances 
of misconduct

Split long doc 
into chunks

Extract officers & 
misconduct

Which plan is best? What parameter choices?



Talk Roadmap

11

🧩 DocETL Operators
New operators for complex document processing

1

🔀 Rewrite Directives
A framework for agentic pipeline optimization to improve accuracy

2

🤖 Optimizer Architecture
Using LLM-as-a-judge to guide optimization decisions

3

👥 Interactive Pipeline Development
Vision for human-AI collaboration on DocETL with interactive latencies

4



DocETL Operators
8 operators for complex document processing

12

LLM-Powered (5)

🔮 map 
Transform each 
document into 1+ results

📊 reduce 
Aggregate multiple 
documents into a result

🔍 filter 
Keep/drop documents 
based on fuzzy predicate

🔗 equijoin 
Join documents on fuzzy 
condition

🎯 resolve 
[New!] Entity resolution 
across documents

Utility (3)

✂ split 
Divide documents into 
chunks

🌳 unnest 
Flatten nested arrays or 
documents

🧩 gather 
[New!] Augment chunks 
with context

No-code; YAML



Reduce Operator
Physical implementation to handle infinite context

13

Task: Find types of misconduct Officer Quinnsworth exhibited multiple times 

Report #127 
“…excessive force 

during arrest…”

Report #89 
“…evidence 

tampering…”

Report #45 
“…excessive force 

complaint…”

+100s more docs 
for Officer 
Quinnsworth

FOLDING

result = {}

Initial state

scratchpad 
= {}

result new 
batch

updated 
result

First fold

+ →
scratch
pad

updated 
scratchpad 

Second fold

result new 
batch

updated 
result

+ →
scratch
pad

updated 
scratchpad 

Scratchpad permits the operator to be maintained incrementally



Resolve Operator
Raising the level of abstraction for users

14

Challenge

Document 1 
👮 Officer X. Quinnsworth…

Document 2 
👮 Sgt. Xander Quinnsworth was…

Document 3 
👮 Officer Quinnswrth, badge #…

Officer names are inconsistently referred to 
across documents! 

Even if they are consistently represented, an 
LLM might inconsistently extract them.

Quinnsworth

Officer 
Quinnsworth

Interface

- type: resolve 
  key: officer_name 
  comparison_prompt: | 
    Do these names refer to 
    the same officer? Name 1:  {{ input1.name }}        
    and Name 2: {{ input2.name }} 
  resolution_prompt: | 
    Provide canonical name for: 
    {% for input in inputs %} 
    - {{ input.name }} 
    {% endfor %}

✅ Comparison prompt to assess equality of two keys 

✅ Resolution prompt to determine canonical name



Resolve Operator
Implementation

15

Three-Phase Resolution
1. Blocking 
Automatically synthesize task-
specific rules (e.g., find a blocking 
threshold via sampling; have LLM 
generate code)

2. Build Clusters 
Compare all eligible pairs; merge 
clusters on LLM-determined 
equality and equality by 
transitivity

LLM
3. Canonicalize 
For each cluster, invoke the LLM 
to determine the canonical form 
or name 

LLM

Embedding-based blocking: 
Only compare pairs that meet 
a similarity threshold

1. (J. Wilson, Officer Wilson)

2. (Officer Wilson, Det. Wilson)

3. (J. Wilson, Det. Wilson)

3 is equivalent by 
transitivity!



Gather Operator
Augmenting chunks post-split

16

Who is “he”? 

What happened before?

Context Types

⬇ Previous/Next 
Chunks

See Figure 2 on the 
next page for a 

detailed view of…

[Figure 2] Architecture 
diagram showing…

Need next chunk for 
referenced context

📝 Transformed 
Content

“He boarded a train 
to…”

Previous 200 pages: 
“Suspect was last seen 

in Paris…”

Summary of a long prefix

📑 Document 
Metadata

The licensee shall…

1. Contract Terms 
1.1 Licensing 
1.1.2 Usage Rights

Section hierarchy context

Challenge

Chunk 1 
👮 Officer J. Smith responded…

Chunk 2 
He then proceeded to…



Gather Operator
Illustrative Examples

17

-type: gather 
 content_key: .. 
 peripheral_chunks: 
  previous: 
   tail: 
    count: 0.5 
  next: 
   head: 
    count: 0.5

-type: gather 
 content_key: .. 
 peripheral_chunks: 
  previous: 
   head: 
    count: 1 

-type: gather 
 content_key: chunk 
 peripheral_chunks: 
  previous: 
   middle: 
    content_key: chunk_summary



Talk Roadmap

18

🧩 DocETL Operators
New operators for complex document processing

1

🔀 Rewrite Directives
A framework for agentic pipeline optimization to improve accuracy

2

🤖 Optimizer Architecture
Using LLM-as-a-judge to guide optimization decisions

3

👥 Interactive Pipeline Development
Vision for human-AI collaboration on DocETL with interactive latencies

4



Why Rewrite Directives?

19

map 

For each document, extract officer 
name & describe the misconduct.

reduce 

Group by officer; summarize and 
analyze misconduct patterns.

USER’S PIPELINE NAIVE LLM DECOMPOSITION

reduce 

For each document, 
summarize it into key points.

original map original reduce

❌  Operator semantics can be wrong 

❌  Initial operation loses critical details 

❌  Not logically equivalent

Rewrite directives enable “safe” operator decomposition.



13 Rewrite Directives
Goal = Intelligently Decompose Tasks for Better Accuracy

20

✂ Data Decomposition
Break down large inputs into 
manageable pieces 

• Document chunking 

• Multi-level aggregation

🎯 Projection Synthesis
Break down the task described 
in the prompt into 2+ prompts 

• Chaining & Isolating 

• Preprocessing

🔍 LLM-Centric Rules
Refine LLM-generated outputs 

• Gleaning 

• Duplicate detection

KEY PROPERTIES

• Abstract frameworks, not concrete rules 

• Interpreted by LLM agents based on context 

• Infinitely many possible instantiations!



Data Decomposition Directives
Solving the “data is too hard” problem

21

DOCUMENT CHUNKING

Map  Split  Gather  Map  Reduce⟹ → → →

+4
MULTI-LEVEL AGGREGATION

Reduce  Reduce  Reduce⟹ →

Document City State
The news today is… Berkeley CA

Good morning! … Dallas TX
Happy November! … Berkeley CA
It’s another sunny … Albany NY
1000s more docs…

To summarize documents for each state, we can… 

1. Summarize documents for each city 
2. Summarize the city summaries

Map

Map

Map

Reduce

To extract all names from a document… 

1. Split the document into chunks 
2. Extract names from each chunk 
3. Combine all the extracted names into one result



Projection Synthesis Directives
Solving the “task is too hard” problem

22

CHAINING

Map  Map  Map⟹ →

ISOLATION

Map  (Map || Map)  Reduce⟹ →

GENERAL PREPROCESSING

Op  Map  Op⟹ →

Original Complex Task 

"Analyze this legal document and 
identify key clauses, risks, and 

provide recommendations"

Map 1: Extract Key Clauses

Map 2: Identify Risks of Clauses

Map 3: Provide Recs

Map 1: Slow App 
Performance

Map 2: Excellent 
Customer Service

Original Complex Task 

"Analyze the app performance and 
customer service in these reviews: The 

checkout process was slow but the 
customer service was excellent..."

Reduce/Combine Analysis

General use cases: 

• Extract relevant fields 
• Transform data format 
• Add derived features

Before reduce: extract key 
info before aggregating

Before filter: compute explicit 
criteria fields



LLM-Centric Directives
Addressing LLM idiosyncrasies to improve outputs

23

GLEANING

Map  Map  ( Mapvalidator  Mapgenerator )<k⟹ → →
Reduce  Reduce  ( Mapvalidator  Reducegenerator )<k⟹ → →

DUPLICATE RESOLUTION

Reduce  Resolve  Reduce⟹ →

1. Initial Operation 

Extract all political views mentioned…

Output: “Healthcare reform, tax policy”

2. Validation and Feedback 

"Missing environmental policy discussion 
from paragraph 3"

3. Refined Output 

"Healthcare 
reform, tax policy, 

environmental 
regulations"

Raw Keys 

New York City

NYC

Berkeley

Berkeley, CA

To summarize documents for each city… 

1. Resolve the city names 
2. Summarize as intended



Comparing Rewrite Directives
A sample of what we’ve learned thus far…

24

✂ Data Decomposition

Good for:  

• Long or many documents 

• Outputs linear in # chunks or 
documents

Extracting all multiple choice 
questions from a test; finding all 
citations in a research paper

🎯 Projection Synthesis

Good for:  

• Ambiguous prompts—where 
task criteria need better 
definition 

• Multi-aspect tasks—when the 
prompt asks for many different 
things

"Extract interesting quotes" → 
Define interesting, then extract

Extracting 40 fields → Break into 
independent extractions

🔍 Gleaning

Good for:  

• Near-miss extractions—when 
initial output is close but missing a 
few items 

• “Needle-in-a-haystack”—finding 
specific, rare information in 
documents

Finding key statements or claims 
in research papers

Modern LLMs support 2M context 
window—quite permissive! 

Requires document to fit in 
context window.



Talk Roadmap

25

🧩 DocETL Operators
New operators for complex document processing

1

🔀 Rewrite Directives
A framework for agentic pipeline optimization to improve accuracy

2

🤖 Optimizer Architecture
Using LLM-as-a-judge to guide optimization decisions

3

👥 Interactive Pipeline Development
Vision for human-AI collaboration on DocETL with interactive latencies

4



Agentic Optimizer
Improving accuracy in user-provided pipelines

26

1
🔍 Validate Current Output 
LLM judge determines if quality is sufficient📄 User Pipeline 

Optimize one 
operator at a 

time
2

🔍 Generate & Test Plans 
Apply rewrite directives as needed

3
✨ Select Best Plan 
Two-stage evaluation by LLM judge

✅ Optimized 
Pipeline 

Move to next 
operator

KEY INSIGHT

LLM agents generate, validate, and select plans to improve accuracy



Agentic Optimizer—1. Validation Agents
How do we determine whether an operator should be rewritten?

📋 LLM creates evaluation rubric [1, 2]

27

Agent

Operation 
prompt (list all 
police officers 
and instances of 
misconduct)

Sample inputs & 
outputs of unoptimized 
operation

Rubric

Example rubric: 

• Are all instances of misconduct from the document captured? 

• Are dates and locations included for each incident? 

• Are there any misconduct claims in the output not supported by the 
document?

✅ LLM evaluates sample outputs 

• If output meets all criteria → Move to next operator 

• If not → Proceed to optimization

[1] Shankar, Shreya, et al. "SPADE: Synthesizing Data Quality Assertions for Large Language Model Pipelines."  VLDB 2024. 
[2] Shankar, Shreya, et al. "Who validates the validators? Aligning llm-assisted evaluation of llm outputs with human preferences." UIST 2024.



Agentic Optimizer—2. Plan Generation
How do we come up with specific rewrites?

28

100s 
of 

candidates
✅

✅ ✅



Agentic Optimizer—3. Ranking Candidate Plans
How do we determine the best rewrite?

Two-Stage Evaluation: 
1.Initial rating (1-5) of each plan's outputs 
2.Pairwise comparisons of top k plans

29

Hybrid approach balances thoroughness with 
computational efficiency: O(n) + O(k²)

Example Comparison 
"Plan B is better because it includes all instances 
of misconduct with proper attribution, while Plan 
A misses several incidents from pages 45-48..."

SAMPLE PLAN RATINGS

    Basic Map                                 3.2

    Projection Synthesis A     4.2

    Projection Synthesis B     3.9



Agentic Optimizer

30

100s 
of 

candidates
✅

✅ ✅

100s 
of 

candidates



Evaluation
25-66% improvements across tasks

31

⚖ LEGAL DOCUMENT ANALYSIS

Task: Extract 40 types of clauses from legal documents

Method Precision Recall F1

DocETL (Unopt) 0.305 0.451 0.364

LOTUS 0.350 0.473 0.379

Palimpzest 0.059 0.013 0.022

DocETL (Opt) 0.394 0.731 0.474

+25% improvement in F1 score 

+55% improvement in recall
17x the cost of LOTUS or DocETL 
(unoptimized)



Evaluation
25-66% improvements across tasks

32

-99.4% pairwise 
comparisons 
eliminated 

+66% 
improvement in 
recall

🕹 GAME REVIEW ANALYSIS

Task: Create a timeline of positive and 
negative reviews for video games

Long Review Docs

👽 DECLASSIFIED ARTICLE ANALYSIS

Task: Find distinct locations of paranormal 
events

Requires Entity Resolution

Task Metric Baseline DocETL (Opt)

Declassified Articles
Location Precision 0.994 1.000

Location Recall 163 270

Game Reviews

Hallucination Rate 0.465 0.312

Sentiment Accuracy 0.664 0.650

Kendall’s Tau 0.470 0.631

-33% reduction 
in 
hallucinations 

+34% 
improvement in 
ordering

1.2x cost 12x  cost



Case Study: Police Misconduct Task
227 documents, avg. 12.5K tokens, 2% exceed context limit

33

👮 TASK

Generate detailed misconduct summaries for each officer, including: officer's name, 
types of misconduct, comprehensive summary with dates and locations.

Metric Baseline DocETL S DocETL T DocETL O

The officers name is a specific name, not generic 0.84 0.93 0.89 0.87

The summary contains a date and location 0.67 0.10 0.91 0.92

The summary does not omit any instance of misconduct 0.42 0.78 0.76 0.80

Human evaluation on 100 random samples • 
96-97% agreement with LLM judge

VALIDATION Up to +90% improvements! 

0.6x the cost of the baseline* 

*Baseline includes entire documents in the reduce operation, 
while S, T, and O apply projection synthesis & are cheaper.



📈 Takeaway 1: Our optimizer can find plans with 
much higher accuracy (25-90% in our evals).

34

💰 Takeaway 2: Higher-accuracy plans are not 
always more expensive.



Talk Roadmap

35

🧩 DocETL Operators
New operators for complex document processing

1

🔀 Rewrite Directives
A framework for agentic pipeline optimization to improve accuracy

2

🤖 Optimizer Architecture
Using LLM-as-a-judge to guide optimization decisions

3

👥 Interactive Pipeline Development
Vision for human-AI collaboration on DocETL with interactive latencies

4



Towards Agentic Data Processing

36

Beyond Accuracy: The Challenge of Ambiguity

“Extract instances of police misconduct”

🤖 LLM Output 
"Officer Thompson raised his voice during questioning. 
Officer Miller arrived 10 minutes late to the scene."

👤 Human Refinement 
"Minor behavioral issues aren't misconduct. Focus 
on violations of policy, use of force, or civil rights.”

🤖 LLM Output 
"Officer Wilson detained suspect for 48 hours without 
charges. Officer Davis conducted search without 
warrant."

👤 Human Refinement 
"Good, but also note if these actions were justified 
by department policy exceptions.”

KEY INSIGHT

LLM-powered data processing requires sensemaking!



Human-Centered Research Questions

37

🤔 INTENT UNDERSTANDING

When do we optimize vs refine operator definitions? 
• Did they mean excessive force or any force?  

• Is this a prompt issue or optimization issue?

🤝 HUMAN-IN-THE-LOOP

When & how should humans steer the LLM? 
• During optimization? How so?

👁 VISUALIZATION

How do we visualize unstructured operations? 
• Data flows between operators? Data in the outputs?

🌊We're riding a 
wave of 
unprecedented 
capabilities in data 
processing. It is very 
exciting! ✨



Data Systems Research Questions
Towards Cheap, Fast, and Accurate Queries

38

💲 COST & ACCURACY OPTIMIZATION

What rewrite directives optimize runtime and cost without 
sacrificing accuracy? 
• Operator fusion, hybrid cost models, retrieval/RAG, etc.

🤝 EFFICIENT OPERATOR EXECUTION

How can we adapt plans to data characteristics during execution? 
• Expand the set of models we consider for model cascades 

• Training binary classification models on-the-fly for resolve, equijoin, filter

👁 INTERACTIVE LATENCIES IN THE UI

How can users quickly iterate on their prompts? 
• Sampling, approximate query processing, etc.

🌊We're riding a 
wave of 
unprecedented 
capabilities in data 
processing. It is very 
exciting! ✨



Takeaways 💡

39

📄 Complex Documents Need Better Tools 
Traditional systems struggle with long, unstructured documents

🧩 New Operators for New Challenges 
Gather for context, resolve for entity variations

🤖 Agentic Optimization Works 
25 to 66% improvements across case studies

🤝 Human-AI Collaboration is Key 
Support evolving understanding between human and AI

Try DocETL today! 🚀

⭐ 1.3k+ GitHub Stars 

👥 300+ Discord Members 

🌐 docetl.org  

📧 shreyashankar@berkeley.edu 

Thanks to: 
Aditya G. Parameswaran, Eugene Wu 
CLEAN team at UC Berkeley 
Bhavya Chopra, Mawil Hasan, Stephen Lee, James Smith, 
Bjoern Hartmann 
Yiming Lin, Sep Zeighami

Shankar, Shreya, Aditya G. Parameswaran, and Eugene Wu. “DocETL: Agentic Query Rewriting and Evaluation for Complex Document Processing.” In progress.

http://docetl.org
mailto:shreyashankar@berkeley.edu

