# **Unstructured Data Analysis with** DOCETL



Shreya Shankar<sup>1</sup>, Aditya G. Parameswaran<sup>1</sup>, Eugene Wu<sup>2</sup> UC Berkeley EECS<sup>1</sup> and Columbia University<sup>2</sup> November 2024

## UC Berkeley

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK





#### **DocETL: A System for Unstructured Data Processing** Launched ~2 mos ago 1.3k 🖕 github.com/ucbepic/docetl 300+ 😳



Declarative YAML interface and operator suite that makes complex document processing accessible to non-programmers



Improves output accuracy and quality by intelligently and automatically **decomposing complex tasks** 

\*We currently focus on optimizing accuracy, not cost.

### We're Just Getting Started! 🚀

- Civic Engagement
- Service Psychiatry
- Email Analysis
- Mining Law Articles
- Summarizing educational

#### resources





Demo

# Today's Goals @

**KEY INSIGHT** 

### Why Optimize for Accuracy?

X Long documents break LLMs

LLMs make mistakes on hard data processing tasks

Complex tasks require tedious decomposition

### LLM-powered query processing requires optimizing for accuracy, not just performance.

### **2** An Architecture for Such a Query Optimizer



LLMs as accuracy judges in query optimization

25-66% accuracy boosts across tasks

# **Complex Document Processing**

https://bids.berkeley.edu/california-police-records-access-project

### **Police Records**



### **Required Analysis Types**



Identify instances of procedural violations and misconduct



Link incidents involving the same officer across documents

Challenges Multiple document types (case reports, hearings, etc) Very long & inconsistent

Challenges **Complex reasoning required Cross-document analysis** 

### **Extract** Misconduct

### **Current Approaches**



Too time-consuming!



Too resource-intensive!



Error-prone

Hard to program



# A Declarative Solution

name: extract\_misconduct
type: map
output:
 schema:
 misconduct: "list[{officer: str, incident: str}]"
prompt: |
 Analyze the following police record...

Amenable to complex pipelines



Automatic performance optimization

Is this all??Are wedone??

# Still, Writing Reliable Complex Pipelines is Hard





### **Missed Information**

LLMs ignore instances or give incorrect answers when docs are too long

Users must verify correctness themselves



### **Manual Validation**

### Experimentation

Users must figure out how best to decompose tasks

### Unfortunately, LLM Mistakes are Here to Stay Recent research shows these limitations are fundamental

# On Limitations of the Transformer Architecture

Peng, Narayanan, & Papadimitriou 2024

Transformers can't solve certain compositional tasks

# © Same Task, More Tokens: Impact of Input Length on LLM Reasoning

Levy, Jacoby & Goldberg, ACL 2024

Longer inputs = worse performance, even when the task's inherent complexity is unchanged

# Calibrated Language Models Must Hallucinate

Kalai & Vempala, STOC 2024

Good predictions require some hallucination

# Key insight: complex tasks need to be broken down into smaller, well-scoped tasks to be correct.

## Systems Should Rewrite Pipelines to Optimize Accuracy





Which plan is best? What parameter choices?

For each police officer involved, extract any instances of misconduct.



# Talk Roadmap









### **DocETL Operators** 8 operators for complex document processing

### LLM-Powered (5)

### 🔮 map

Transform each

document into 1+ results

#### reduce

Aggregate multiple documents into a result

### Utility (3)

### < unnest

Flatten nested arrays or documents

### ℜ split

Divide documents into chunks

### No-code; YAML

### **G** filter

Keep/drop documents based on fuzzy predicate

#### Sequijoin Join documents on fuzzy condition

#### **@**<sup>\*</sup> resolve

[New!] Entity resolution across documents

#### 🛷 gather

[New!] Augment chunks with context



## **Reduce Operator** Physical implementation to handle infinite context

### Task: Find types of misconduct Officer Quinnsworth exhibited multiple times

| <b>Report #127</b><br>"…excessive force<br>during arrest…" | <b>Report #89</b><br>"…evidence<br>tampering…" | Rep<br>"exce<br>com |
|------------------------------------------------------------|------------------------------------------------|---------------------|
| FOLDING<br>Initial state                                   | First fold                                     |                     |
| result = {}                                                | result new                                     | up<br>→             |
| <pre>scratchpad    = {}</pre>                              | scratch batch<br>pad                           | up<br>scra          |

Scratchpad permits the operator to be maintained incrementally

port #45 cessive force mplaint..."

+100s more docs for Officer Quinnsworth





LLM might inconsistently extract them.

### **Resolve Operator** Implementation

### **Three-Phase Resolution**

**1. Blocking** Automatically synthesize taskspecific rules (e.g., find a blocking threshold via sampling; have LLM generate code)

#### 2. Build Clusters

equality and equality by transitivity



| 1. (J. Wilson,<br>2. (Officer Wil |
|-----------------------------------|
| 2. (Officer Wil                   |
| 2. (Officer Wil                   |
|                                   |
|                                   |
| 3. (J. Wilso                      |

Embedding-based blocking: Only compare pairs that meet a similarity threshold



 $\rightarrow$ 

## Gather Operator Augmenting chunks post-split

| Challenge                                 | Context                               |
|-------------------------------------------|---------------------------------------|
| <b>Chunk 1</b> Officer J. Smith responded | Previo<br>Chu                         |
| Chunk 2<br>He then proceeded to           | See Figure<br>next page<br>detailed v |
| Who is "he"?<br>What happened before?     | [Figure 2] A<br>diagram s             |

Need next chunk for referenced context

### t Types

#### ous/Next unks

re 2 on the age for a view of...

Architecture showing...

## Transformed Content

Previous 200 pages: "Suspect was last seen in Paris…"

"He boarded a train to..."

Summary of a long prefix

#### Document Metadata

Contract Terms
 Licensing
 Usage Rights

#### The licensee shall...

#### Section hierarchy context

## Gather Operator Illustrative Examples





-type: gather content\_key: chunk peripheral\_chunks: previous: middle: content\_key: chunk\_summary



# Talk Roadmap







Optimizer Architecture Using LLM-as-a-judge to guide optimization decisions



# Why Rewrite Directives?



Rewrite directives enable "safe" operator decomposition.



- X Not logically equivalent

## **13 Rewrite Directives** Goal = Intelligently Decompose Tasks for Better Accuracy

### **X** Data Decomposition

Break down large inputs into manageable pieces

- Document chunking
- Multi-level aggregation



- Chaining & Isolating
- Preprocessing

#### **KEY PROPERTIES**

- Abstract frameworks, not concrete rules
- Interpreted by LLM agents based on context
- Infinitely many possible instantiations!

### Projection Synthesis

Break down the task described in the prompt into 2+ prompts

### **LLM-Centric Rules**

Refine LLM-generated outputs

- Gleaning •
- Duplicate detection •

## **Data Decomposition Directives** Solving the "data is too hard" problem

#### **DOCUMENT CHUNKING**

 $\mathsf{Map} \Longrightarrow \mathsf{Split} \to \mathsf{Gather} \to \mathsf{Map} \to \mathsf{Reduce}$ 



To extract all names from a document...

- 1. Split the document into chunks
- 2. Extract names from each chunk
- 3. Combine all the extracted names into one result



**MULTI-LEVEL AGGREGATION** 

 $\mathsf{Reduce} \Longrightarrow \mathsf{Reduce} \to \mathsf{Reduce}$ 

| Document           | City     | State |
|--------------------|----------|-------|
| The news today is  | Berkeley | CA    |
| Good morning!      | Dallas   | ТХ    |
| Happy November!    | Berkeley | CA    |
| It's another sunny | Albany   | NY    |
| 1000s more docs    |          |       |

To summarize documents for each state, we can...

- 1. Summarize documents for each city
- 2. Summarize the city summaries

## **Projection Synthesis Directives** Solving the "task is too hard" problem

### CHAINING

 $Map \Longrightarrow Map \rightarrow Map$ 

#### **Original Complex Task**

"Analyze this legal document and identify key clauses, risks, and provide recommendations"



Map 3: Provide Recs

ISOLATION

 $\mathsf{Map} \Longrightarrow (\mathsf{Map} \mid\mid \mathsf{Map}) \rightarrow \mathsf{Reduce}$ 

#### **Original Complex Task**

"Analyze the app performance and customer service in these reviews: The checkout process was slow but the customer service was excellent..."

Map 1: Slow App Performance Map 2: Excellent Customer Service Reduce/Combine Analysis GENERAL PREPROCESSING  $Op \Longrightarrow Map \rightarrow Op$ 

General use cases:

- Extract relevant fields
- Transform data format
- Add derived features

Before reduce: extract key info before aggregating

Before filter: compute explicit criteria fields

## **LLM-Centric Directives** Addressing LLM idiosyncrasies to improve outputs

GLEANING

 $Map \implies Map \rightarrow (Map_{validator} \rightarrow Map_{qenerator})^{<k}$ Reduce  $\implies$  Reduce  $\rightarrow$  (Map<sub>validator</sub>  $\rightarrow$  Reduce<sub>generator</sub>)<sup><k</sup>

#### **1. Initial Operation**

Extract all political views mentioned...

Output: "Healthcare reform, tax policy"

#### 2. Validation and Feedback

"Missing environmental policy discussion from paragraph 3"

"Healthcare reform, tax policy, environmental regulations"

#### **DUPLICATE RESOLUTION**

Reduce  $\implies$  Resolve  $\rightarrow$  Reduce

#### **3. Refined Output**

| Raw Keys               |              |  |  |
|------------------------|--------------|--|--|
| New York City Berkeley |              |  |  |
| NYC                    | Berkeley, CA |  |  |

To summarize documents for each city...

- 1. Resolve the city names
- 2. Summarize as intended



## **Comparing Rewrite Directives** A sample of what we've learned thus far...

### **X** Data Decomposition

Good for:

- Long or many documents
- Outputs linear in # chunks or documents

Extracting all multiple choice questions from a test; finding all citations in a research paper

### Projection Synthesis

Good for:

definition

"Extract interesting quotes"  $\rightarrow$ Define interesting, then extract

things

Extracting 40 fields  $\rightarrow$  Break into independent extractions

• Ambiguous prompts—where task criteria need better

• Multi-aspect tasks—when the prompt asks for many different

### **Gleaning**

### Good for:

- Near-miss extractions—when initial output is close but missing a few items
- "Needle-in-a-haystack"—finding specific, rare information in documents

#### Finding key statements or claims in research papers

Modern LLMs support 2M context window—quite permissive!

**Requires document to fit in** context window.



# Talk Roadmap







Optimizer Architecture Using LLM-as-a-judge to guide optimization decisions



**1** Interactive Pipeline Development Vision for **human-Al collaboration** on DocETL with interactive latencies

## Agentic Optimizer Improving accuracy in user-provided pipelines



**KEY INSIGHT** 

LLM agents generate, validate, and select plans to improve accuracy

LLM judge determines if quality is sufficient

Apply rewrite directives as needed

**Optimized** Pipeline

Move to next operator

Two-stage evaluation by LLM judge

## **Agentic Optimizer—1. Validation Agents** How do we determine whether an operator should be rewritten?

### LLM creates evaluation rubric [1, 2]

Example rubric:

- Are all instances of misconduct from the document captured?
- Are dates and locations included for each incident?
- Are there any misconduct claims in the output not supported by the document?

### LLM evaluates sample outputs

- If output meets all criteria → Move to next operator
- If not  $\rightarrow$  Proceed to optimization

[1] Shankar, Shreya, et al. "SPADE: Synthesizing Data Quality Assertions for Large Language Model Pipelines." VLDB 2024. [2] Shankar, Shreya, et al. "Who validates the validators? Aligning Ilm-assisted evaluation of Ilm outputs with human preferences." UIST 2024.



## Agentic Optimizer—2. Plan Generation How do we come up with specific rewrites?



### Agentic Optimizer—3. Ranking Candidate Plans How do we determine the best rewrite?

Two-Stage Evaluation:

Initial rating (1-5) of each plan's outputs
 Pairwise comparisons of top k plans

### **Example Comparison**

"Plan B is better because it includes all instances of misconduct with proper attribution, while Plan A misses several incidents from pages 45-48..."

Hybrid approach balances thoroughness with computational efficiency:  $O(n) + O(k^2)$ 

| SAMPLE PLAN RATINGS           |     |
|-------------------------------|-----|
| Basic Map                     | 3.2 |
| <b>Projection Synthesis A</b> | 4.2 |
|                               |     |

Projection Synthesis B 3.9

# Agentic Optimizer



# Evaluation

25-66% improvements across tasks

LEGAL DOCUMENT ANALYSIS

Task: Extract 40 types of clauses from legal documents

| Method         | Precision | Recall | <b>F1</b> |
|----------------|-----------|--------|-----------|
| DocETL (Unopt) | 0.305     | 0.451  | 0.364     |
| LOTUS          | 0.350     | 0.473  | 0.379     |
| Palimpzest     | 0.059     | 0.013  | 0.022     |
| DocETL (Opt)   | 0.394     | 0.731  | 0.474     |

+25% improvement in F1 score +55% improvement in recall

### 17x the cost of LOTUS or DocETL (unoptimized)



# Evaluation

25-66% improvements across tasks

**W** DECLASSIFIED ARTICLE ANALYSIS

Task: Find distinct locations of paranormal events

**Requires Entity Resolution** 

| -99.4% pairwise | Task                         | Metric Baseli      |       | DocETL (Opt) |
|-----------------|------------------------------|--------------------|-------|--------------|
| comparisons     | <b>Declassified Articles</b> | Location Precision | 0.994 | 1.000        |
| eliminated      |                              | Location Recall    | 163   | 270          |
| +66%            |                              | Hallucination Rate | 0.465 | 0.312        |
| improvement in  | Game Reviews                 | Sentiment Accuracy | 0.664 | 0.650        |
| recall          |                              | Kendall's Tau      | 0.470 | 0.631        |
| 1.2x cost       |                              |                    |       |              |



### **GAME REVIEW ANALYSIS**

Task: Create a timeline of positive and negative reviews for video games

Long Review Docs

-33% reduction in hallucinations +34% improvement in ordering











## **Case Study: Police Misconduct Task** 227 documents, avg. 12.5K tokens, 2% exceed context limit

### 👮 TASK

Generate detailed misconduct summaries for each officer, including: officer's name, types of misconduct, comprehensive summary with dates and locations.

#### Metric

The officers name is a specific name, not generic

The summary contains a date and location

The summary does not omit any instance of misconduct

#### VALIDATION

Human evaluation on 100 random samples • 96–97% agreement with LLM judge

| Baseline | DocETL S | <b>DocETL T</b> | DocETL O |
|----------|----------|-----------------|----------|
| 0.84     | 0.93     | 0.89            | 0.87     |
| 0.67     | 0.10     | 0.91            | 0.92     |
| 0.42     | 0.78     | 0.76            | 0.80     |

### Up to +90% improvements! 0.6x the cost of the baseline\*

\*Baseline includes entire documents in the reduce operation, while S, T, and O apply projection synthesis & are cheaper.

# Takeaway 1: Our optimizer can find plans with much higher accuracy (25–90% in our evals).

# Takeaway 2: Higher-accuracy plans are not always more expensive.

# Talk Roadmap









Interactive Pipeline Development Vision for **human-Al collaboration** on DocETL with interactive latencies

## **Towards Agentic Data Processing** Beyond Accuracy: The Challenge of Ambiguity

"Extract instances of police misconduct"

#### **LLM Output**

"Officer Thompson raised his voice during questioning. Officer Miller arrived 10 minutes late to the scene."

#### **Weight States of Contract Contract States of Contr**

"Officer Wilson detained suspect for 48 hours without charges. Officer Davis conducted search without warrant."

**KEY INSIGHT** 

LLM-powered data processing requires **sensemaking**!



#### **L** Human Refinement

"Minor behavioral issues aren't misconduct. Focus on violations of policy, use of force, or civil rights."

#### **L** Human Refinement

"Good, but also note if these actions were justified by department policy exceptions."

# Human-Centered Research Questions

### **W** INTENT UNDERSTANDING

When do we optimize vs refine operator definitions?

- Did they mean excessive force or any force?
- Is this a prompt issue or optimization issue?

#### > HUMAN-IN-THE-LOOP

When & how should humans steer the LLM?

• During optimization? How so?

#### VISUALIZATION

How do we visualize unstructured operations?

• Data flows between operators? Data in the outputs?

We're riding a wave of unprecedented capabilities in data processing. It is very exciting! 🛟



## **Data Systems Research Questions** Towards Cheap, Fast, and Accurate Queries

### **\$ COST & ACCURACY OPTIMIZATION** What rewrite directives optimize runtime and cost without sacrificing accuracy?

• Operator fusion, hybrid cost models, retrieval/RAG, etc.

#### EFFICIENT OPERATOR EXECUTION

How can we adapt plans to data characteristics during execution?

- Expand the set of models we consider for model cascades
- Training binary classification models on-the-fly for resolve, equijoin, filter

#### INTERACTIVE LATENCIES IN THE UI

How can users quickly iterate on their prompts?

• Sampling, approximate query processing, etc.

We're riding a wave of unprecedented capabilities in data processing. It is very exciting! 🛟





### Complex Documents Need Better Tools

Traditional systems struggle with long, unstructured documents

### New Operators for New Challenges

Gather for context, resolve for entity variations

### Agentic Optimization Works

25 to 66% improvements across case studies

### > Human-Al Collaboration is Key

Support evolving understanding between human and AI

Shankar, Shreya, Aditya G. Parameswaran, and Eugene Wu. "DocETL: Agentic Query Rewriting and Evaluation for Complex Document Processing." In progress.



